18th May 2017

Standing on the Shoulders of Giants: Developing Antibiotics



Ex Aula - Logo4-cropped

Hannah Behrens, DPhil Infection, Immunology and Translational Medicine (m.2015)

Although first discovered in 1928, it was only during the Second World War that Penicillin was developed into a drug that could cure people of bacterial diseases. This started the “antibiotic era” and is considered to be one of the most important medical discoveries of the twentieth century. Antibiotics have since been saving us from otherwise fatal bacterial diseases.

Today, nearly a century later, on the same street where penicillin was first mass-produced, another significant step in the development of antimicrobial drugs is taking place: bacteriocins antibiotics.

Over the years, extensive (ab)use of antibiotics led to bacterial resistance. Furthermore, it was found that antibiotics can cause a problem called dysbiosis. Our body contains millions of bacteria, the so-called microbiome. They fulfil many important functions which includes fighting disease-causing bacteria. When an antibiotic kills all these bacteria there is a void that can be filled by the dangerous bacteria, leading to worse diseases than before the treatment (e.g. C. difficile infection).

The onset of dysbiosis is why bacteriocins may be critical to treating bacterial infections. Bacteriocins are very specific antibiotics that kill only one kind of bacteria each, leaving the remaining microbiome intact. They bind to unique molecules on the surfaces of bacteria, trick the bacteria to take them up by disguising themselves as nutrients and finally kill them. Like traditional antibiotics some bacteriocins target transcription and cell wall synthesis, others however poke holes in the bacterium’s membrane or degrade their genetic information, their DNA or RNA.

It is known that bacteriocins are potent antibiotics in mice and pigs (and in moths), more potent in fact than conventional commercial antibiotics. There seem to be very low levels of resistance to bacteriocins and in experiments where bacteria were exposed to bacteriocins repeatedly, resistance did not emerge.

The potential for bacteriocins is huge and the field eagerly anticipates the start of human trials; a significant step forward considering some bacteria are resistant to all 26 antibiotics on the market.[1] One of the things that need to be known about any new medication before it is tested is how it works. This helps anticipate side effects. Therefore, my research focusses on unravelling the mechanism behind the most potent bacteriocin found to date:  pyocin S5.

More specifically, I investigate how is pyocin S5 is so specific in finding its target cells? How does it get into target cells to kill? Where does the energy for the entry come from? And, can bacteria inactivate bacteriocins?

While these are very specific questions, answering them will (hopefully) be the first step to opening up the whole repertoire of bacteriocins for use in patients. If bacteriocins can prevent us from falling back into the pre-antibiotic era, their arrival could be as important as the discovery of penicillin was in Sir Alexander Flemings laboratory, close to a century ago.

[1] Ashley Welch, ‘Woman died from superbug resistant to all available antibiotics in US’, 13 Jan. 2017, CBS News, http://www.cbsnews.com/news/woman-dies-from-superbug-resistant-to-all-available-antibiotic-in-u-s/.


Recent Research Highlights

2nd August 2017

Winner of Inaugural MCR Writing Competition: Ex Aula

The winner of the first Ex Aula prize, for the best article submitted to the Teddy Hall MCR online journal, has been announced as Elizabeth Raine (2014, DPhil in Zoology). Elizabeth receives the £500 prize for her intriguingly-titled article, ‘Dung Beetles: We Should All Talk More About Poo’, in which she discusses the fascinating and often underestimated role played […]

Read More…

1st June 2017

The Molecules of Life That Trigger Death

Layal Liverpool, DPhil in Infection, Immunology, and Translational Medicine Nucleic acids –  DNA and RNA – are the molecules of life. Without them we wouldn’t exist but, ironically, they are the very molecules used by viruses to hijack our cells. Viral nucleic acids act like a virus-blueprint, containing all the instructions necessary to make more […]

Read More…

24th May 2017

The Death of the Brainstem: Should Each Person be Permitted to Define Death for Themselves?

  Jake White,  Law Established understandings of when death occurs have been critically undermined by technological advancement and medical innovation. Conceptions of what ‘it’ is that is constitutive of human life has been destabilised as medical intervention makes possible the continuation of major organs that would otherwise succumb to failure. Where a patient is in […]

Read More…

18th May 2017

Standing on the Shoulders of Giants: Developing Antibiotics

Hannah Behrens, DPhil Infection, Immunology and Translational Medicine (m.2015) Although first discovered in 1928, it was only during the Second World War that Penicillin was developed into a drug that could cure people of bacterial diseases. This started the “antibiotic era” and is considered to be one of the most important medical discoveries of the […]

Read More…

12th May 2017

‘Good entertainment & civill mirth’: English Provincial Fairs in the Eighteenth Century

  Jessica Davidson, DPhil in History On 24 May 1702, 18 year old John Cannon set off with his friend John Berryman for Binegar fair, 12 miles from their home in West Lydford, Somerset, ‘being joyous of seeing this great fair’. There they were to set up a stall to sell hats made by Berryman’s […]

Read More…